Use of Multivariate Analysis in a State Water Quality Monitoring Program for Linking Stressors to Biological Impairments

10th National Monitoring Conference
Tampa, Florida
May 2 – 6, 2016
Robert J. Miltner
Ohio Environmental Protection Agency

Fact or Opinion?

You can never have too many wooly buggers

Stressor Identification

- Clean Water Act Section 303(d)
 - A TMDL is a pollution budget for or more pollutant sources
 - Recent Ohio Supreme Court ruled that TMDLs must go through formal rulemaking
- Need to better document causal assessment
 - Systematic approach to analysis
 - Riva-Murray et al. (2002) Northeastern Naturalist 9(2):127-162
 - Morris et al. (2006) Arch. Environ. Contam. Toxicol. 50:325–334
 - Norton et al. (2015) Ecological Causal Assessment (Book)
 - US EPA CADDIS website

Assessments are More Complex

- Historic focus on point sources
 - free chlorine
 - ammonia
 - BOD
 - effluent toxicity
 - monthly operating reports

- Increased focus on diffuse sources
 - multiple stressors
 - high degree of colinearity
 - restoration target ambiguous
 - WQ standards lacking (sediment)
 - limits of biotic index calibration

Basin Surveys

300 ~ 700 square miles
60 - 90 sampling locations
geometric progression
targeted sampling

Outline of Approach

- R used for analyses
- Survey-specific methods
 - ordination of biological data
 - hierarchical clustering visually identify similar groups
 - nonmetric multidimensional scaling
 - overlay environmental variables on ordination
 - identify candidate stressors, visualize colinearity
 - examine influence of stressors within and across groups
 - boxplots of stressors by group, additive models
 - random forest model
- Comparison to regional models

Hierarchical Clustering

Identify groupings of sites based on composition of biological assemblages

- convert biological assemblage counts or presence/absence to distance matrix
- vegan package for distance matrix; hclust for clustering

swdist hclust (*, "ward.D2")

Are Groups Environmentally Meaningful?

Overlay Environmental Variables on Ordination

Protection Agency

Influence of Stressors - Random Forest Model

Partial Dependence on TKN

Packages: randomForest party

	var	%IncMSE	IncNodePurity
	tkn	20.17087646	1497.93609
	da	15.28934007	1019.61436
	qhei	14.31103493	1433.53018
	no2	8.70120823	841.78265

Regional Models

Interpret observed/expect

Deviation from reference condition

- e.g., RIVPACS define groups based on biological assemblages; find environmental variables that best discriminate those groups
- NRSA uses a RIVPACS-type model for o/e

Prediction based on regional data

Logistic regression
 e.g., model predicting EPT | drainage area
 ECBP of Ohio

y = alk + chloride + so4 + D.O. + TKN + QHEI evaluation and diagnostics

ROC curve -

Hosmer-Lemeshow test chi square = 6.697, df= 8, p=0.570

Receiver Operating Curve

Regional Logistic Regression Model Applied to

Specific Survey

Expected Richness | Drainage Area

Getting Started

- CADDIS provides walk-throughs of causal assessments; provides introduction to data analysis
- R software
 - package documentation and vignettes
 - excellent on-line help
- START A LEARNING CIRCLE!

senior managers - you owe it to your staff

staff - don't ask, just do

middle managers - congratulate your staff on showing initiative

Parting Thoughts - The Moral of Wooly Bugger

